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Model fluid in a porous medium: Results for a Bethe lattice
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We consider a lattice gas with quenched impurities or “guenched-annealed binary mixture” on the Bethe
lattice. The quenched part represents a porous matrix in whickatirealefl lattice gas resides. This model
features the three main factors of fluids in random porous media: wetting, randomness, and confinement. The
recursive character of the Bethe lattice enables an exact treatment, whose key ingredient is an integral equation
yielding the one-particle effective field distribution. Our analysis shows that this distribution consists of two
essentially different parts. The first one is a continuous spectrum and corresponds to the macroscopic volume
accessible to the fluid, the second is discrete and comes from finite closed cavities in the porous medium.
Those closed cavities are in equilibrium with the bulk fluid within the grand canonical ensemble we use, but
are inaccessible in real experimental situations. Fortunately, we are able to isolate their contributions. Separa-
tion of the discrete spectrum facilitates also the numerical solution of the main equation. The numerical
calculations show that the continuous spectrum becomes more and more rough as the temperature decreases,
and this limits the accuracy of the solution at low temperatures.
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[. INTRODUCTION resulting integral equation has an interesting structure, which
means that although numerical solution is relatively straight-
When fluids are adsorbed in porous materials, they beforward at high temperature, as temperature is lowered the
have very differently from what we know in the bulk. This field distribution (and hence also the numericbecomes
happens in both high-porosity materials, such as silica aergnore and more involved. This problem is also worse close to
gels, and low-porosity materials, such as Wcor glass. Eveihe percolation threshold of the porous medium.
an aerogel that occupies a few percent of the total volume The Bethe lattice is defined on a large uniformly branch-
significantly deforms and reduces the gas-liquid binodal ofng tree of which the Bethe lattice is the part far from any
the fluid. At least three factors affect phase equilibrium ofperimeter site(This is distinct from a Cayley tree, which
fluids in porous media: wetting, randomness, and confineincludes all part3.The Bethe lattice should not be confused
ment by the matrix. A number of models exist that emphasizavith the Bethe approximation, which usually denotes a set of
one or two of those factors, and they greatly facilitate undermean-field-like self-consistency equations for order param-
standing of possible behaviors of the fluid in the porous meé€ters. The Bethe approximation is closely related to the clus-
dia (see review in Ref[1]). But theoretical models that take ter variation method or cluster approximation, which derive
into account all three factors appear to be extremely hard t§ese equations from truncated cluster expansion of either
deal with. All existing microscopic theories are inconclusivethe free energy or entropy functional employing several
even concerning the qualitative behavior of the gas-liquidvariational parameters. For many models these approxima-
binodal in the porous medium. Conventional approximationfions become exact on the Bethe lattice, but not in the case
schemes yield very different results depending on the modéitudied hereexcept for special choices of paramejef&his
and on the level of approximatiof2,3]. The Monte Carlo is & part of the motivation for the exact analysis presented
simulations suffer from long relaxation times and are perbelow. Another important goal is to rectify a shortcoming of
formed in a very limited simulation bo.,4,5). This makes the grand canonical ensemble when dealing with fluids in
any exactly treatable model especially desirable. We shaporous media. This ensemble allows fluid to equilibrate
consider such a model, which features all the three factors. firoughout the pore space, including closed pores that are
derives from the well-known lattice gas model of a fluid. We inaccessible to fluid in reality. For the Bethe lattice we are
shall consider here only the simplest representation of a rarble to isolate and remove the effects of these closed pores.
dom porous mediun{quenched impurities of equal sjze We shall formulate the model and present the basic equa-
The model is exactly solvable on the Bethe lattice, in thetions in Sec. IIl. The analysis of Sec. Ill will bring forward
sense that we can derive a closed integral equation for th&e notion of finite clusters and their importance for a correct
local field distribution. Related approaches, leading to simidescription of the fluid. Details of the numerical algorithm
lar equations, were previously known in the context of spinand computer-aided results will be presented in Sec. IV. Sec-
glasseg6,7] and the Random Field Ising modg8,9]. The  tion V contains our conclusions.

. . . o Il. THE MODEL
*Also at Institute for Condensed Matter Physics, 1 Svientsitskii,

Lviv 79011, Ukraine. In lattice models of a fluid, the particles are allowed to
TAlso at Institute for Condensed Matter Physics, 1 Svientsitskii,occupy only those spatial positions that belong to sites of a
Lviv 79011, Ukraine. Electronic address: tata@icmp.lviv.ua chosen lattice. The configurational integral of a simple fluid
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is thereby replaced by the partition function
n+l1

Z=Trexp—BH), B=1I(kgT),

1
H:H_MN:_E; Iijninj—,uZ ni, (1)

wheren;, which equals 0 or 1, is the number of particles at
sitei (i=1, ...V, whereV is the number of the lattice sites
[10]). Tr means a summation over all occupation patterns.
The total numbeN of particles is allowed to fluctuatey is

a chemical potential, which should be determined from the
relation

N=<§i: ni> s (=27 exp = BH). ()

H

Since particles cannot approach closer than the lattice spac- FIG. 1. A schematic picture of the Bethe lattice with coordina-
ing allows, lattice models automatically preserve one esseriion numberz=4. The arrowheads do not mean that the links are
tial feature of the molecular interaction: nonoverlapping ofasymmetric, they just illustrate the way the partition function cal-
particles. The lattice fluid with nearest-neighbor attraction isculation proceedssee text

known to demonstrate the gas-liquid transition only. Never-

theless, the lattice gas with interacting further neighbors pos- B

sesses a realistibvhich means argonlikephase diagram H__OEJ-) JiiS‘Si_Ei hiS;+ const, ()
with all the transitions between the gaseous, liquid, and solid

phases being preseftl]. In this paper we deal only with

fluid phases and restrict ourselves to the nearest-neighbor Jij=Jviyj, hi=yiH+A, ,Aizyi@ X, (5)
interaction. !

The fluid adsorbed in the porous solid can be thought of _
as residing on a lattice, of which a fraction of sites are ex- J=1/4, H= ul2+zIl/4, H=K/2—1/4. (6)

cluded or preoccupied by particles of another sort. Although
in practice these blocked sites, representing the solid, musiere yj=1—x; describes the accessibility of siteto the
form a connected networkf the solid is to remain statjc ~ fluid particles; the constant term in E@f) embraces several
we ignore this here and allow sites to be blocked at randorrpieces that depend only on quenched variables and therefore
Thus, we have to consider the lattice gas with quenched imdo not contribute to the thermodynamiasis the coordina-
purities, whose Hamiltonian is given §g] tion number of the lattice; the sum gnin Eq. (5) spans
nearest-neighbor sites to siteWhen deriving Eq.(4) we
used the equality;=n;y; . A; is a random field correlated to
H=-1 <,EJ> nm,——K(Zj) n‘Xi_“Z ni @ surface sitesA; # 0 at the sites that are accessible to the fluid
(y;i=1), and are in contact with the solidt least one of the
whereZ ;;, means summation over all nearest-neighbor sitespeighbor sites has;#0). WhenH=0, Eq.(4) is a Hamil-
and quenched variables describe the presence;&1) or  tonian of the diluted Ising ferromagnet, and we shall fre-
absence X;=0) of a solid particle at site. Each site of the quently refer to this limiting case throughout the paper.

lattice can be either emptyx(=0, n;=0), occupied by a The grand thermodynamic potential of the model is
fluid particle ;=0, n;=1), or filled with a particle belong-
ing to the porous solid and therefore inaccessible to the fluid

(x,=1, n;=0). The first term of Eq.(3) describes the F=—kgT '”; % exp—BH)) v
nearest-neighbor attraction between the fluid particles ( ' i
>0), the second one corresponds to the fluid-solid attraction 1 1

(K>0) or repulsion K<0) on the nearest-neighbor sites.
The hard-core repulsion is taken into account by mutual ex-
clusiveness of particles;+n;<1.

It is quite customary to establish the connection betweenvhere the distribution functiop({x;}) is a quenched one
lattice gases and the Ising model. Indeed, a simple substituhat describes the distribution of solid particles in space.
tion S,=2n;— 1 transformg1) into the Ising Hamiltonian. In We shall study this model on the Bethe lattice, which
the Ising model languag® = —1 means an empty site, and permits us to calculate an exact thermodynamic potential. It
Si=1 corresponds to a site occupied by a fluid particle. Curis known that many problems on treelike structures, such as
rent model(3) is equivalent to the diluted Ising model with that depicted in Fig. 1, can be solved iteratively. The term
random surface field: “Bethe lattice” refers to an infinitely deep part of such a tree.

(CoNpg= 2 w0 2 pxHC) @

026124-2



MODEL FLUID IN A POROUS MEDIUM: RESULTS.. .. PHYSICAL REVIEW E 68, 026124 (2003

Each site on theth level hask=z—1 neighbors at the so thatc, is a fraction of the sites occupied by the matrix.
(n+1)th level and one neighbor at tha{1)th level. The When we move recursively from the surface of the tree
partition function of the model can be calculated recursivelydeeper into its interioQ;(1,h) changes, but should tend to a
from upper levels to the bottom. For example, let us considefixed point at infinitely deep levels of the tre€;(1,h)
the cluster of sites framed by the dashed box in Fig. 1, where-Q(1,h). It follows from Eq.(13) that the resulting distri-
k= 3. The following relation(which holds for allk) shows bution obeys
how tracing out spins at the upper level forms an “effective
field” on the lower level:

k
Q(lvh):<yif [H dh;Q(y; ,hj)}
k k =1
DIREEDY exp(ﬁso;1 JaS+B2 S

X 6

k
h—hi— 2, U(Jij,hj))> . (19
= %

k
:LHl C(Joi ) [exp( BRoSy), 9

In writing this equation, and throughout the following, we
. now specialize to the case where there is no correlation of
~ the {y;} variables(which specify the sites occupied by the
h0:h0+|21 UJai,hy), (10 solid matriy beyond nearest-neighbor correlations, which
are permitted. In this case, taking into account thaipper
U(J,h)= B latanftani BJ)tank gh)], (11)  branches do not interact until they meet the chosen site, the
fields {h;} are uncorrelated/in more general casey, at
cosh 8J)cosh h) different branches are correlated; the joint distribution
cosli BUI.N)] (12 Q(y;,hy1, ... .yk,ho) cannot be decoupled as a product of
' Q(yj.h;); and Eq.(18) is invalid.] Using the integral repre-
sentation of the5 function

C(J,h)=2

We have thus obtained an effective fidlg, which is a sum
of the original fieldhg and k contributions from the upper

g . d
branches. We can proceed this way recursively downward, 8(h)= j _gexgigh), (19
i 2w
giving
k we can factorize thé function in Eq.(18) and get
hi=hi+2>, U b)) (13)

j=1 dé: - Kk
Q(l’h):<fZYiexF[lﬂh_hi)]]l:[lthjQ(yj,hj)

at each level. In the nonrandom case, wiesh and Jj;

=J, the effective field deep inside the tree satisfies the stable
point relation that follows from Eq(13): xexf —iU(J; .hj)]> _ (20)
Fi=h+kU(JR). (14) &

) Configurational averaging with respect to the quenched vari-
For our model(4), we can expect that a properly defined ables(- - - ),y in Eq. (20) can now be performed explicitly,
effective fielddistribution tends to a stable limiting form at anq it yields

deep levels of the tree.

Let us consider the probabilif®;(y,h)dh thaty,=y and d i ~
Fimh: Q<h>=f£exp[|§<h—H>]Qk<§>, (21)

i(ty,h)={d,y 8(h—h; , 15 - _
QM= A0 " Qe =pesp i)y [ dv QU e —icuth)]
where 6(h) stands for the Dirac distribution, andl,, is a
Kronecker’s delta §,, equals 1 ifa=b, and equals O other- where we introduced the notatio@h)=Q(1,h)/c;, u(h)
wise). Q;(0,h) is the effective field distribution at a matrix =U(J,h), p,=w,;/c,, and
site, andQ;(1,h) is the field distribution for a site accessible

to fluid. It is easy to see from Eqél3) and (5) that when Wap=(Bay, Sby, ) (x} (22)
yi=0, J;;=0, and h;=0, the effective fieldh;=0, thus N _
Qi(0,h) does not depend onand has a simple form is the probability to findy;=a and y;=b at a randomly
chosen pair of nearest-neighbor siteandj. For example,
Qi(0,h)=Q(0,h)=cys(h), (16)  wy=(YYj)qx iS @ probability that both sites in the pair are
) accessible to fluid. For each site accessible to the flojd,
where we define specifies the probability that a given nearest-neighbor site is
. accessible as welpg=1—p, is, correspondingly, the prob-
Cy=(yy) 1+ 17 ability that this neighbor site is occupied by the solid.
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Note thatQ(h) specifies the distribution of the effective the context of spin glass¢6,7] and the Random Field Ising
field created byk “upper branches.” The complete one-site model[8,9]. We did not encounter this kind of equation for
field deep inside the tree consists of contributions cominghe current model in the literature, even for the limiting case

from all z nearest neighbors, and its distribution takes intopf diluted ferromagnetg: 0). In this section we investigate

accountz equivalent branches

QZ<1,h>=<yi5( n-h-3 UG, ,r,j))>
B {x

d ~
ZCJ %exqig(h—H)]Qz(g), (23

Q,(0.h)=cod(h). (24)

the ways of solving this equation.

For the diluted Ising ferromagnet in zero external field,
when H=H=0, Q(h)=4(h) is always a solution of Eq.
(21), and it yields zero magnetizatioq$)=0) or, in the
fluid model language, the occupancy number equals one half
({n;)=1/2) at all sites. This is known as the trivial solution
in all calculations leading to an analytical result, and this is
the only solution at the temperatures above critical. What are
the nontrivial solutions?

When there is no solid mediumc{=1) or when the

This distribution determines the one-site average values. Faolid sites are arranged in a nonporous block or slab with a

example, in the magnetic interpretation of mod®), this
total one-site field permits to calculate the average magneti-

zation (per magnetic site

m:<<niSi>H>x/01:J dhQ(htank(gh). (25

smooth surface f;=1), the solution isQ(h)=&(h—h),
andh is given by Eq.(14). This equation has a nontrivial

soluton (#0) at low temperatures: T<T,, T,
=J/[kgatanh(1Kk)]. In this case the results of the cluster
Bethe approximation become exact.

When quenched chaos is presep;£1), and H=H

Calculation of other thermodynamic properties is less strait=0, the trivial solution becomes unstable at temperatures
forward. The thermodynamic potential of the tree is a sum obelow

“site” and “link” contributions [6,7]:

BF({x}) =k, InTriexm—mﬁm—(E> In Tr;;exp — BH;),
i ]
(26)

T.=J/{kgatant 1/(kp,)]} (29

(this is an accurate resyltsignifying the appearance of the
spontaneous magnetic orddiS()#0). Importantly, though,
the cluster approximation is not accurate when both mag-

where; andH;; are Hamiltonians of one site and a pair of netic ordering and quenched disorder are present. In the gen-
sites, respectively, and the traces act only on the corresponéral case I#0,H+#0), we do not have any simple formula
ing local degrees of freedom. The configurationally averagedor the critical temperature or the field distribution. In what
thermodynamic potential of the Bethe latice must take intdfollows, we study the structure of this distribution more
account only deep levels of the tree. We do this by assigninglosely.

the stable point field distribution to all the sites when doing First, we shall consider the simple limiting case of diluted
configurational averaging. The Bethe lattice thermodynamienagnet without surface field= 0) [12]. In this case matrix

potentialF is, therefore, given by

1
BFIN=B(F((x0)pyIN=KS, [ dnQuy; hin Ty

1 1
xexp—pH)— 2 3 3 [ 4oy, 0y

yi=0yj=0 CyiCy;
Xf dh;Q(y;j,h)InTr; exp(— BH;)), (27

where’H; and’;; depend on both fluidS) and matrix § or,
equivalently,x) variables:

H,=h|5i,H”:hISi-i-h]SJ-i-J,JSSJ (28)

Ill. THE SOLUTION

sites break the links between spins, but do not introduce any
field that breaks the spin-flip symmetry. It follows from Eg.
(29 that whenp,<1/k, T. does not exist, and the spontane-
ous magnetic order does not appgdhe reason is that in
this case the system is not percolated: there is no infinite
cluster of linked spins, only finite clusters, and in finite sys-
tems the spin-flip symmetry cannot be spontaneously bro-
ken) Let us realize that in this system for any matfat any
value ofp;, except 0 or Lthere is a finite fractiorf13] of
spins whose links are all broken, because all their neighbor-
ing sites are occupied by the matrix. The effective field at
those sites equals just an external fieldThus, it is likely
that the solutionQ(h) contains a term inS(h—H). In the
case of zero external fieldH=0) one easily finds that a
solution of the formQ(h)=Ay48(h) +q(h) does satisfy Eq.
(21), and one gets

Ao=(po+P1A0)~, (30)

The result of the preceding section is that thermodynam-

ics of the model is determined by the one-site field distribu-
tion Q(h), and this distribution satisfies integral equation
(21). Equations of this type have been known previously in

d¢ .
q(h)=f§exm§h)[{po+ P1A0+A(é)} = Aol,
(31
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- The latter relation can be obtained by integrating E3p)
q(é)= Plf dh’q(h")exgd —igu(h")], with respect tch and noting that the total weight & func-
tions satisfies Eq(30). Equation(34) means that the ob-
tained discrete spectrum is just the singke 0 level that we
had in the casél=0 split by the external field. Eacla(,h))

1 pair corresponds to a certain finite tree “growing” up from
the given site. For examplea(,hl)z(p(';,H) corresponds
to the “zero” tree, when allk links to the upper sites are
broken; naturallyh,=H, anda; equals the probability that

where we expeag(h) to be a nonsingular function, because
a 6 function positioned in any other plad&\,6(h—a),a
#0] or a set of suchd functions does not lead to sel
consistent equations of the required form.

Let us show thatA, has a simple physical meaning,

namely, it equals the probability that &lupper branches are _ ; . ; )
finite. Consider first the probabiliti?; that a branch is finite. all the neighboring sites at the upper level are inaccessible.

It consists of two possibilities: either the first link is broken Now let us turn back to the most general casciwhen both
(with probability po), or it is unbroken, but all farther the surface and the external fields are presett«(Q.H
branches connected to it are finitwith probability p,P¥). ~ #0). Inserting into Eq(21)

This yields Ps=pq+ plP‘f‘. Then, the probability thak o

given bra.nches are finite equatg,=P¥ and saFisfies Eq. Q(h)y=s(h)+q(h),s(h)y=>, a,6(h—h,), (35)
(30). Obviously, Eq.(30) always has the solutiohAy=1, =1

which leads to the trivial solution foQ(h) because of the ) o ) )
normalization conditioff Q(h)dh=1. A;=1 is the only so- ©One can obtain explicit expressions for the discsfte) and
lution whenp,<1/k, as discussed above. At the percolationcontinuousq(h) parts of the spectrum:

point (p;=1/k), it is a twofold solution, which signifies a de

bifurcation. Wh_enpl> 1/k, a solution forA, in the interval s(h)= f —exdiéh—H) X&), (36)
(0,1) always exists. 2@

WhenH#0, the previous ansatz th@t(h)=Ads(h—H) d
+q(h) does not work:5(h—H) placed into the right-hand _ . ~ ~, kK
si(;qe((r)hs) of Eq. (21) gen(erateg, I:L)mder iteration ofgthe equa- ath)= f Eequg(h_H)H[q(st(a] —s(O}
tion, a set ofk different § functions, as does ang function (37)
positioned in some other place. This seemingly rules out the
idea of finding the discrete levels in this case, but a fullywhere
solvable case=2 (the linear chain, see Appendix Aesur- "
rects the hope. In that case solution containséinite series e o .
of & functions. Therefore, in the general case we shall seek S(£)=poexp(—igH) + plgl aex —igu(h)], (38)
the solution in a form of a sum of an infinite set &ffunc-
tions and a nonsingular function:

a(§)=p1f dh’q(h’)exd —igu(h’)]. (39

Q(h)= E a;6(h—h))+q(h). (32 Note that Eq.38) for the discrete spectrum has a closed
=1 form and does not depend aith), whereas the equation for
g(h) does includes(h). This is because the discrete spec-
We now show that such a solution can really be obtainedirym comes from finite trees, whereas the continuous spec-
The point is that, similarly to the zero-field cade0), the  trum is an attribute of the infinite volume. Finite branches
equation for the discrete spectrum separates from the equRnow nothing about the infinite volume; therefos¢h) does
tion for the nonsingular pad(h). Placing Eq(32) into EG.  not depend om(h). At the same time, at any given site finite

(21), we get the equation for the discrete spectrum branches may connect onto the infinite tree; therefore, the
equation forq(h) does depend on the discrete spectrum
- d¢ s(h).
Z a6(h—hy)= f 5, eXHié(h—H)] Let us consider the structure of E@7). It can be rewrit-
=t ten in the form
oc k
k
X| pot+p1> aexd —icu(h)]| . dé . Kl o~
CE | ath)= | 5 exdiéh—H)1Z, || [d(@3 ().
(33 (40)

The number ofs functions is infinite, but their cumulative L€t us recall that by construction of E@1) for Q(h) if we
weight remains finite, and insert some field distribution &3(h) in the rhs, we obtain in

the left-hand sid€lhs) the field distribution one level down
o the tree. The same property holds for E40). Then Eq.(40)
2 a=A,. (34) permits a clear interpretation: each termXyfmixes into the
=1 next-level distribution the possibility that branches
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are infinite, with the othek—1 finite; | runs from 1 tok, the
[ =0 term was rightly eliminated by the last term in £E§7),
because this term would give rise to the possibility of a finite
tree and would give a discrete spectrum contribution. This

z

interpretation makes(£) andq(¢) responsible fgr finite and B Ewllf dhis(hi)
infinite branches, respectively. The surface fielddoes not
enter Eq(37) explicitly; its influence org(h) is mediated by X f dhis(h)In T, exp( — BH,:)
the discrete spectrus(h). In a way,s(h) [or, equivalently, = . .
's(¢) [14]] encapsulates the surface influence. The only ex-
plicit reminder of a porous medium in the equation for the —Zwlof dh;s(h)In Tr;exp( — BH;))
continuous spectrum is thg multiplier in Eq. (39), indicat-
ing that links between sites are not always present. ] ) )

The complete effective field acting on an accessible sitel he first term above corresponds to an accessible site whose

Q,(1h) [defined by Eq(23)] likewise consists of a discrete Pranches are all finite, the second one describes a linked pair
spectrums,(h), and a continuous ong,(h): of accessible sites with outer branches finite, and in the third

term one site of the pair is accessible to the fluid, but all its
branches are finite. Note that the division into these three

yi=1

kclf dh;s,(h))In Triexp( — BH;)

yi=ly;j=1

yi=1y;=0

Q,(1,h)=cys,(h)+cqq,(h) 47 terms does not reflect the presence of different types of site
but reflects the subdivision into site and link contributions in
d Eq. (26).
B & . ~ Dropping these “finite volume” contributiongand con-
s(h)= J ﬂexp[lg(h—H)]s (&), (42 stant terms corresponding to the sites occupied by the ma-

trix) we obtain the thermodynamic potential of the fluid in
the accessible volume as

d ~ ~ ~
a(h)= J %exr[ig(h— H)K[a(8)+s(£)1°~s(&)}.
(43

,8F/N=kclf dh;q,(h))InTriexp — BH,)
yi=1

z
The total weight of the discrete part B §W11J dhiQ(hi)f dhjfa(h;)

+25(h])]|n Trijexq_ﬁHij)

x:f s,(h)ydh=AZ¥ (44) y=1y,~1

—zWyo | dhiq(h)InTr;expl— BH;:)
equals the probability that af branches connected to this 1of A eXR =BT

yi=1y;=0
site are finite. When this happens, the site belongs to a finite : 45
closed volume. (49

When considering the fluid in the grand canonical en-The procedure of “contribution classification” is especially

semble(as we have done so faall sites are in equilibrium  simple when we consider the expression for the dergiey
with an |mp||C|t bulk fluid, whose temperature and Chemicalfree Vo|ume n:<<ni>H>{X}/Cl' The grand canonical en-

potential are parameters that describe this equilibrium. But iRemple(GCE) predicts
real experiments fluid particles cannot access any discon-
nected pore volumdslescribed bys,(h)], and those parts of 1
the system do not respond to changes of the chemical poten- n=f dh[QZ(h)+Sz(h)]i[lﬂam(ﬁh)]: 2
tial. Were we considering a magnetic system, spins in those (46)
finite separated clusters would be able to react to changes of ) o
external fieldH, and thermodynamic potentié27) would be Whereas whgn we take |n'to accou_nt that gloseq finite pores
valid. In contrast, in order to describe the experimental situ@'€ inaccessible to the fluid, the microscopic fluid density at
ation for a fluid in porous medium, we have to exclude thetN0S€ Sites has to be set to 0, and we obtain the corrected
contribution of finite volumes to the thermodynamic poten- Infinite cluster” (IC) expression
tial. Fortunately, we are now able to separate this contribu- 1
tion because finite branches always generate a discrete spec- n= f dh: g,(h) 5[1+tanr{,8h)]+sz(h)>< O’
trum, in contrast to the infinite cluster, which yields the
continuous distribution.

Inserting Eqgs.(35) and (41) into the expression for the =
thermodynamic potentigR7), we can identify three distinct
contributions of finite volumes (47)

m+1
1—-x+ f dhqz(h)tanr(,[)’h)}/2= T—An,
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102 . . . . . . YT, tively sparse solid that blocks only a small fraction of sites.
HU=0.4  x In that case the 20 “heaviest” levels carry more than 99.96%
w3l ¢ HJ=1.0 - of the total weight. A9, approaches the percolation thresh-
. x o old, the convergence of the series becomes progressively
04, x . o poorer. For example, the 200 heaviest levels in the &ase
. x ° =2, p,=0.6, contain only 87% of the discrete spectrum’s
105t *+ % o° weight. This naturally agrees with the fact that there appear a
& O s e S lot of large finite trees near the percolation point, and the
1078 e xx X oxo 0% o number of forms of a tree quicklfcombinatorially grows
oo i ;x Xi; 9 ° Lo with its size. One other interesting feature of the discrete
107 g ¥x X mxoxx o0 oo spectrum is its bandlike structure, wit) densely grouped
i WX X8 &K 8 2 8o° around certain values, and, subdividing into several
108 L X% 1B B 2 $o seo, branches a$l increases.
W | om0k, 50 S Mook | S8, wedq”® Onces(h) is calculated to a given high accuralalefined
0 02 04 06 08 1 12 14 16 18 2 by e=(Ag—2a))/Ag], we can proceed by solving E¢37).
h - H

A numerical algorithm must represent the functigth) as

. =N i = —hs i

FIG. 2. The coordinates and weights &peaks in the discrete inOM ve(l\:/'io_r :? (h\l,gi,thh;w rslﬂ;‘?icileAnleAlgrg((ahn??xishﬁg?g:‘/lljl Ito
iggc:ums_(h)t flor k|=2, H=h0, pl?bl?/'?’_-'ac:'_'?fig‘o: 1/83;_:;3'3 note that q(h) is nonzero only on a finite interval
=1 'I"er?gfvsei eh\tls ?o?r:\llsth(:ewtnhree c_asés, are ;he. s,a?r:]e only th Nimin :Mmeyd: this permits use of the Fourier series instead of
T g : » ony e Fourier integrals. The lower and upper limits of this in-
positions of thes peaks differ. .

terval may be estimated as

where x is a fraction of free sites belonging to the finite h —H . K. (k—1)H.
cavities, defined by Eq44), and the difference between the min=H+min[ —kJ,(k—1)H—J],
GCE and IC densities,

hine= H +max kJ,(k—1)H+J]. (49

1
An:f dhs,(h) 5 [1+tank(Ah)], (48)  These bounds are far from exact at high temperatures, but
this does not make a significant impact on the efficiency of

is simply the number of fluid particles in finite cavities per the caIcuIanns{lS]. . . . .
number of the free sites. The numerical solu_tlp_n of _Ec[_37) is an iterative process.
We start from some initial distributiofthis may be a uni-
form distribution and insert it into the rhs of Eq37). The
resulting lhs is a new approximation to the solution. Each
In order to solve main equatiai21) we have to calculate iteration produces the field distri_butim_mh) one level deeper
the discrete spectrur86) and use it when solving for the then the tree. Ther(_eforg, s.uch. iterations must converge pro-
continuous part of the field distribition via Eq37). The vided the st.able point Q|str|but|on defined bY Eal)_ ex!sts
procedure of the discrete spectrum calculation is iterative®d numerical errors introduced by the discretization are

We place the zeroth approximatiaih) — pgﬁ(h— Ho kﬁ) small enough. Naive quadratures for E2{1) would result in

into the rhs of Eq(36) and obtain in the Ihs a sum &f+-1 & a formula
functions, one of which coincides with the initial one and has M-1
the correct weighpg. Placing the new approximation into q(h)= >, exgi& (h—H)H{[a(&)+5(&)1—3&)},
the rhs of Eq(36) recursively, we can obtain as many terms j=1-M
as we need. The unpleasant feature is that the number of (50
levels in the spectrum grows exponentially during the itera-
tions, and many levels have negligible weight. Fortunately, ~ _ .
one can drop the low-weight levels at each step, because they a(£))=paah ,20 alh)exd —igu(h)], (5D
produce only lower-weight levels during the following itera-
tions. =2ail(he.—h

Let us note that the weights éffunctions depend only on =27 (™ i),
parameterp;, which is determined by the structure of the which takes of ordeM?® calculations at each iteration, be-
solid matrix. The positions of the functions depend also orcause each of the indicég, andl in Egs.(50) and(51) take
other parametersT( H, H, andJ). As we discussed in the M essentially distinct values. This quadrature is both ineffi-
preceding section, the discrete spectrum corresponds to finitéent and incorrect. First, to implement the correct numerical
trees growing from a site. Each level in the spectrum correalgorythm, it is important to note that expiéu(h’)] is a
sponds to a tree of a certain size and form, and its weight iguickly oscillating function ofh’ when ¢ is large, and this
a probability to find such a tree in the system. Figure 2 showsequires a special quadrature when calculatinghtheategral
an example of the discrete spectrum for the case of a relan Eq. (37). Second, the Fast Fourier Transform algorithm

IV. NUMERICAL CALCULATIONS

M-1
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takes onlyO(MInM) steps to perform the summation oyer 100 T =04
in Eq. (50) for all i. Also, Prest al.[16] describe an algo- 80 |
rithm that permits simultaneous calculation Mf integrals 50 |
overh’ in Eqg. (37) using again onlyO(M In M) operations. 40|
Therefore, with advanced algorithms, each iteration costs
O(M In M) arithmetic operations. This is a dramatic gain 20 ¢ J J l
with respect to the quadratures estimatedgM?3), because 0 . r—
as seen belowM is typically many thousands. gl TMe=0.6
The numerical results we report here are limited to coor-
dination number 3K=2), and a completely random matrix, 6r
when there is no correlation between quenched variables 4t
even at the nearest-neighbor sites; hewgg=c,c, and p, ol
=c,. Since we are studying the behavior of a fluid in a
porous media, we can set aside very dense matrices with 0
p;<1/k; these have no infinite connected volume accessible 161
to the fluid, so thag(h)=0, and thermodynamic potential 12}
(45) equals 0. 5 0 |
First, we shall consider the simpler case of a diluted Ising ’
ferromagnet H=0), which corresponds to fluid in the po- 04T
rous matrix with a moderate fluid-matrix attractiork ( 0 TT <09
=1/2). In this case the exact critical temperature is known 15 ¢ ¢
from Eq. (29); whenH=0 andT>T_, Q(h)=4(h) andm 12t
=0 (n=1/2), while at lower temperatures there are two 09 |
symmetric nontrivial solutionsQ_(h)=Q_(—h), with 06 |
Q. (hy=Ay8(h)+q.(h), Ag=(co/c,)?. The temperature 03 |
dependence ofi, (h) is shown in Fig. 3. One can see that 0
theq, (h) line repeats itself, but not in a trivial fashion. The TTe=0.99
continuous field distribution acquires even more structure for Ml
denser matricegFig. 4). At low temperaturesy, (h) be- 3
comes a set of increasingly sharp peaks, and this greatly 2
increases the errors introduced by the discretization in the .|
numerical algorithm. Therefore, this algorithm does not work
at very low temperatures. Nevertheless, using extremely fine 0 0 o ] 15 5
discretization(we usedM up to 2''=131072), we covered ' N '
an interesting range of temperatures. With the algorithm just
described we were able to reathT.=0.4. In the magnetic FIG. 3. The continuous padg(h) of the effective field distribu-

interpretation of mode(3) the solutionsQ_ (h) andQ_(h) tion for a weakly dilute Ising ferromagnet{=0.1) withH=0, at
correspond to exactly opposite magnetizationsn, (  different temperatures below the critical point.

=—m_), which reflects the fact that direction of the spon-

taneous(zero-field magnetization is not predetermined. In the inset of Fig. 5 as a function of matrix densify One can

the fluid interpretation, these two solutions form the twosee that the cluster approximation produces the binodals that
branches of the binoddlGCE: n,.=(m,+1)/2, n_=1  are flatter at the top and have an incorrect width. For a lattice
—n_]. Figure 5 shows the resulting GCE binodals at differ-with only sparsely distributed solid sites, the cluster approxi-

ent densities of the matrix. According to E@8), the “infi- mation results are quite accurate.

nite cluster” binodals for this particular caséi €0) have Now, let us consider instead the situation where there is
the same size and shape as GCE binodals; they are onho matrix-fluid attraction (hard-core matrix K=0, H
shifted to lower densities bxn=x/2, An=6.8x10"4, 7.8 =—J. Figure 6 shows how the field distribution at constant

x 1073, 0.039, 0.15, forcy=0.1, 0.2, 0.3, and 0.4, respec- chemical potentialfixed H) now changes with temperature.

tively. In the general caseﬁ(;t 0), the density shift between In the casgdepicted there is a competition between the sur-
the GCE and IC binodals depends on temperature. face fieldH=—-J<0 and the bulk fieldH=0.21J>0. At

The binodal densityor zero-field magnetization, in the high temperatures, the effective field prefers the sign of the
Ising languagg at zero temperature can be found from thebulk field and is mainly positive. AT/T.<0.82, an alterna-
fact that in this case all the spins in the infinite cluster aretive solution forq(h), which favors negative fields, corre-
aligned, whereas finite clusters do not contribute to the sporsponds to the global minimum of the thermodynamic poten-
taneous magnetization, and the magnetizafmsr magnetic tial and becomes preferable. AT .= 0.82 the two solutions
site) equals plus or minus the fraction of magnetic sites beyield the same value of thermodynamic potential at different
longing to the infinite clustetm, (T=0)=1—x. This gives fluid densities, and correspond to the two branches of the
the resulting half width of the binodal, which is depicted in binodal. It should be noted that, is defined as given by Eg.
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MODEL FLUID IN A POROUS MEDIUM: RESULTS.. ..
12 25 0.2
TM, =09 ——
1 h>
2 0.16
0.8
15 0.12
0.6
1 0.08
0.4
02 0.5 0.04
0 0 10
TT, =08 ——
0.8 8
0.6 6
0.4 4
0.2 2
; N )
TM,=07 —— 0 0.5 1 15 2
’ 0.3
T/T,=0.5, h>1 part --—---—-
08 ! i ’ 0.25
M 02
0.6 ; _;,’:r;:p,‘r:;;’yg; i f\
:". il iy .'.‘”i'lf“ i 0.15
'ﬂ'al"ﬁ"" [H 13t
0.4 i M: B
l lﬁ‘!i .; { ={, ii.:l A 0.1
0.2 ik Y i/" |
w ! QL/\ 0.05
0 ~ 1o
0 0.5 1 15 2 1 12 14 16 18 2

FIG. 4. The continuous pad(h) of the effective field distribu-
tion for a strongly dilute(but still percolatedl Ising ferromagnet
(cp=0.4) in zero external field at different temperatures below th
critical point. Some pictures contain a dashed line, which shows th
h>1 part ofq(h) at an enlarged scalglotted against the right

axes.
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FIG. 5. The high-density branch of the GCE binodal, | for

the model withH=0 at different matrix densitiesy. The low den-
sity branch is symmetriaa_=1-n_ . The percolation concentra-

L
0.75 0.8

L
0.95

1
0.85 0.9

PHYSICAL REVIEW E 68, 026124 (2003

102 06 102 0.6
0 TT, =09 0 T/T, = 0.8202
10° 05 443 0.5
* 0.4 0.4
107 1044 .
03 0.3
10° 108
. 0.2 0.2
6 N - |
10 ; 01 10 0.1
T = - S V) T 4
215105005115 2
102 3 10% 7
0 T/T,=0.819 0
w0 6
5
-4
10 4 =
a =
105 3 °
2
-6
10
1
107 0
2
102 60
103 50
10 “
30
10
20
-6
10 10
107 4 0
2 2 19 -18 -17 -16 -15
h-H

FIG. 6. The effective field distributio®(h) for a fluid in a

gSparse hard-core matri;ﬁ(= —J, ¢g=0.1) atH=0.21] at different
éemperatures. The crosses show weightand locations, of lead-

ing & functions in the discrete part of spectrusth)==,a,6(h
—h)), plotted against the leff axes. The lines depict the continu-
ous part of the distributiomj(h) (against the rightyy axes. The x
axis ish—H.

(29) and is not atbut is close tpthe critical temperature for
this matrix. Figure 7 shows the temperature dependence of
the fluid density at different values &f. The jumps corre-
spond to coexistent densities at the binodal. One can see that
in this case the binodal is not symmetric. The results de-
picted in Fig. 7 correspond to the “grand canonical fluid”
described by Eqg27) and(46). The fraction of the free sites
that belong to finite closed cavitigs=(cy/c;)%] is as small
as 0.14% for this relatively sparse matrix; therefore, the bin-
odal of the “infinite cluster fluid,” which excludes their con-
tribution, is indistinguishable on the plot from that depicted
by the whole line in Fig. 7. Let us also note that due to a
special symmetry of model4) [19], the binodal of sym-
metrical caseH=J (K=2J, attractive matrix coinsides
with that in Fig. 7 flipped with respect to=1/2 line.

Next, we would like to consider denser matrices, and here
the poor convergence sfh) leads to a problem. We did not

have this problem in the case of dilute magri@t:(O), be-

tion for the lattice usedK=2) is c,=1/2. The inset shows the Cause its entire binodal, in view of spin-flip symmetry of that
dependence ofi. at zero temperature on the matrix density. The Special case, correspondedHe-0, when the discrete spec-
dotted lines represent the corresponding results of the cluster varidtum consisted of only one terms(h)=Ayd(h), which
tion method[17].

could be exactly calculated for the matrix of any denfiiy.

026124-9



SOKOLOVSKII, CATES, AND SOKOLOVSKA PHYSICAL REVIEW E68, 026124 (2003

1 . . . T — . T T 107! .
S A .
0o | L GXE)
P [ 2
Y 10
08 [ j/ 021
0.22
-3
07 | / 10
o [ 023 —_
£ s g
06 ’ 0.24 4
10”
0.25
05
-5
635 107 1
04| .
03 ! 1 1 1 1 ! 1 1 10-6 L
0 0.1 02 03 04 05 06 07 038 09 2 19

n

FIG. 7. The temperature dependence of me equilibrium fluid FIG. 9. The same as Fig. 8, but calculated with an adjusted

dens?ty at different values ¢ for the model witr_H =—Jatmatrix  giscrete spectrura(h), Eq.(52). The arrows point to the groups of
densityco=0.1. The numbers at the dashed lines are the values of 's raised byA. The resulting continuous spectra corresponding to
the external fieldH. The lines jump over the phase separation ré-(a) 48 and(b) 804 terms ins(h) are indistinguishable.

gion, delimited by the solid line. The binodal within the cluster

approximation[18] is depicted with a dotted line. . . o ]
has the correct total weight. This way we distribute the miss-

(30)]. For the hard-core matrix{= —J) this no longer takes ing weight of large trees among the largest of those taken
place. Forcy= 0.3 the 48 leading-functions ofs(h) contain  into account. From the physical point of view this means that
95.5% of its weight, 804 terms contain 98.6%. If we simply we replace the “very large” branches by the “large” ones
ignore the residual weight and solve Eg&7) with an incom-  and in this way forbid “very wide” pores. The latter implies
pletes(h), the resultingg(h) strongly depends on the num- a certain correlation in the matrix and is always an approxi-
ber of terms taken into account &h) (see Fig. 8. mation, since when deriving E¢37) we permitted only the

To overcome the problem, we use the following trick. nearest-neighbor matrix correlations. Anyway, the results
First, we calculate the leadingd Zerms ofs(h). They corre-  myst become accurate in the lirhit-0, and we find that the
spond to 2 relatively small finite trees, because the largermethod converges already at smalFig. 9). A remarkable
trees have smaller weight. Then we determinelthightest o\ feature ofg(h) in Fig. 9 is the presence of steps, ac-

terms among them and add=(A,~=7,a)/I to their companied by sharp peaks, especially visible hat H

weights. The resulting discrete distribution =-1.85 or —1.75. It is possible that these peaks are not
[ 2l accuratgsee Appendix B they could be numerical artifacts
s(hy=>, a;8(h—hy)+ > (a;+A)s(h—h;) (52) arising in places wherg(h) in reality has only a stef20].
i=1 i=l+1 Note anyway that these peaks are nbtfunctions; their
- ' . . ' 6 heights remain almost unchanged when we increase resolu-
R @ tion from M =2to M =25 whereas if they weré peaks,

their heights would then doub[&1].

102 ¢ : 1° Having overcome this convergence problem wsifn),
. ®a we can calculate phase diagrams for denser mattieigs.
108k 2% s 14 10 and 1}. For these denser matrices, unlike the cege

=0.1, the difference between the grand canonical ensemble

s 13 % binodals and the infinite cluster ones becomes clearly visible,
although the fraction of finite closed cavities is still not large
12 [X(cu=0.2)=1.6%, x(cy=0.3)=7.9%]. This fraction
grows to 100% at the percolation poitwhich happens at
11 co=0.5 for this lattice, thus making a big difference near
percolation.
a1 6 - 5 - S One can see that GCE and IC binodals fb+=—J are
h-H h-H indiscernable, which indicates that for this case closed pores

in GCE are almost empty,_and their contribution is negligible
[22]. On the contrary, foH=J, they are almost saturated

truncated discrete Spectrus{h). One of the cases depictdd) with fluid, andAn is close to the fractiow of closed pores in
corresponds to 48 leading-functions taken into account is(h) the matrix. This situation should also hold for strongly attrac-

(all the terms with weightg,>10"%). In the other cas¢b) there tive or repulsive matriceé,H|>1. For dense enough matri-
are 804 terms irs(h) (the terms with weights,>10"%). ces with smalletH|, An will be nonzero for both negative

FIG. 8. The field distribution for the model withl=—J at
matrix densitycy=0.3, H=0.61, andT/T.=0.64 calculated with
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1 — T responded to the mean spherical approximatM8A), and

predicted a binodal of the usual form. The higher approxi-
mation yielded a binodal with two critical points or even two
disconnected binodals. Their highest order approximation
again gave only one critical point, but predicted a shoulder
on one of the binodal’s sides. The MSA applied to md@el

09 f
0.8

07 |

0.6

on the five-dimensional fcc or bcc latti€2] again predicted
: a double-humped binodal. A problem identified for MSA was
05 b oo ] that for the three-dimensional lattices it predicted a double-
04| L° 4 humped binodal even for the bulk fluid without any porous
: : matrix. Therefore, the authors ¢2,3] could not conclude
03

0 01 02 03 04 05 06 07 08 08 1 definitely abon_Jt the ex_ist_ent;e of two critical points for these
n models, despite the similarity of their results to the double-
o - humped binodals seen in the Monte Carlo simulations on
FIG. 10. The binodals for the models with=—J andH=J at similar modelg[4,5]. Our theory does not give any double-
matrix densityc,=0.2. The bold lineqc) represent the “infinite  humped binodal, at least in the range of parameters we have
cluster” binodals. The thin dashed linds) are the grand canonical stydied.
ensemble binodalgn the H=—J case this line is hidden by the
overlapping(c) line]. The binodals within the cluster approximation
[18] are depicted with a dotted lin@). The pairs of(a) and (b) V. CONCLUSIONS
binodals are symmetric with respectrie- 1/2. The pair of(c) lines
is symmetric with respect ton=(1-x)/2=0.492. The small
squares orfb) and(c) lines are the actual data points through which
the interpolating lines were drawn.

We considered the Bethe lattice model of fluid in a porous
medium. The recursive character of the Bethe lattice permits
an exact treatment, whose key ingredient is an integral equa-
tion for the effective field distribution. Solutions of this equa-
o tion consist of a sum of discrete and continuous spectra, and
and positiveH and will depend on temperature. these spectra have distinct physical interpretations. The dis-

In the above results for our numerical treatment of thecrete spectrum comes from disconnected finite pore spaces,
exact integral equations, deviations from the cluster approxiwhereas the continuous spectrum is a contribution of the
mation are clearly visible in the phase diagrafgs. 5 and infinite pore space, which in reality is the only one accessible
7), and become very large in some cagégs. 10 and 11 to fluid. The continuous spectrum develops more and more
Note that the cluster approximation permits no simple waystructure at low temperature, which means that a numerical
round the failure of the grand canonical ensemble to prevergolution for it becomes impractical below a certain tempera-
fluid from entering closed pores. ture. However, the physical results found for temperatures

It is interesting to note that some other related approachesbove this threshold are both consistent and reasonable. De-
[2,3] predict an unusual double-hump binodal of the fluid inspite use of a Bethe lattice they differ significantly from the
moderately dense strongly attractive or repulsive matiices results calculated using the cluster Bethe approximation,
terms of the current model, this means lai¢). Kierlik ~ which cannot handle the complexity of the field distributions

et al. [3] considered an off-lattice molecular model of fluid that we find.
in a quenched disordered configuration of spheres on the The dichotomy between the two types of pore space men-
basis of a replica symmetric Ornstein-Zernike equation. Theyioned above is not exclusive to the Bethe lattice, but univer-

studied a sequence of approximations, the first of which corsal. Any microscopic model of fluid in a random porous me-
dia that uses the grand canonical ensemble will include

contributions of the finite cavities, unless this is carefully
L , e subtracted off, as we managed to do for the Bethe lattice. In
1F T b RO the grand canonical ensemble, these cavities are in equilib-

’ ' ) rium with the external bulk fluid, but in real-world experi-
ments they are inaccessible and do not respond to changes of
chemical potential. This marks an important distinction be-
tween models of fluids in porous media and disordered mag-
netic model to which they are equivalent in the grand canoni-
cal ensemble; for magnetism, finite clusters do contribute to
the free energy and it is right to include them.

14
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APPENDIX A:  SOLUTION OF THE INTEGRAL
EQUATION FOR THE FIELD DISTRIBUTION
FOR THE ONE-DIMENSIONAL CHAIN

In the one-dimensional chaik=1, and Eq.(21) can be
solved analytically. Performing first the integration with re-
spect to¢ in the rhs of Eq.(21), one gets

Q(h)=Do5(h—H—ﬁ)+p1f dh’Q(h")é(h—H-u(h’))

=pod(h—H—H)+po(h—H)Q(h—H)), (Al

where v(h) is the function inverse tou(h), that is,
v(u(h))=h, andv(h) is its derivative. The above equation
says thatQ(h) equalspoé(h—H—ﬁ) for h in the close
vicinity of H +H, otherwise one has to look at the value o
Q atv(h—H) and multiply it by p;v(h—H). This observa-
tion leads to a solution of the for@(h)=2x,a,6(h—h,).
The leadings function is given explicitly in the rhs of Eq.

(A1), and positions of the furthe functions are given by
relations

f

v(h,—H)=hy, v(hz—H)=h,,---. (A2)
This means, in particular, that in the vicinity b
Q(h)=pw(h—H)Q(h—H))
=p1w(h—H)pod(h—H)—hy)
=P1Pod(h—hy), (A3)

and thereforea,=p;py. In general, one can find that
=p,a,_,. Finally, we can write the solution in the form

Q<h>=pol§l pits(h—h), (A4)
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FIG. 12. A function with discontinuities (periodic on
[—0.5;0.9) and its Fourier expansion, truncated Mt=16 and
M =32.

whereh, are given by the recursion that follows from Eq.
(A2),

=

h=u(h_y)+H, 1=2, h;=H+H. (A5)
APPENDIX B: ON THE NATURE OF SPIKES IN THE

CONTINUOUS DISTRIBUTION q(h)

In our numerical calculation we represeqth) as anM
vector and use truncated Fourier series. This is guaranteed to
work well only for smooth functions. For example, truncated
Fourier series result in peaks near discontinuitieig. 12.
These are called “Gibbs ears.” Note that the Gibbs ears have
a height that remains fixed, while their width narrows to 0 as
the resolution improves. There is accordingly no area be-
neath a Gibbs ear, unlike &function. The spikes in Fig. 9
do not look exactly like the Gibbs ears: the Gibbs ears appear
in pairs, and the positive ear has a negative counterpart,
whereas spikes in Fig. 9 are asymmetric, with negative
spikes much smaller and almost absent at the fine discretiza-
tion (M =219 that we used to produce the plot. It is still
possible that equatiofrecursion (37) somehow creates a
type of positive-only Gibbs ear effect, but this does not seem
likely.

[1] L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, and M.
Sliwinska-Bartkowiak, Rep. Prog. Phy&2, 1573(1999.

[2] E. Kierlik, M.L. Rosinberg, G. Tarjus, and E. Pitard, Mol.
Phys.95, 341(1998.

[3] E. Kierlik, M.L. Rosinberg, G. Tarjus, and P.A. Monson, J.
Chem. Phys106, 264 (1997); 110 689 (1999.

[4] K.S. Page and P.A. Monson, Phys. Re\b& 6557(1996).

[5] M. Alvarez, D. Levesque, and J.-J. Weis, Phys. Rev6(:
5495(1999.

[6] S. Katsura, S. Inawashiro, and S. Fujiki, Physic®% 193
(1979.

[7] M. Mezard and G. Parisi, Eur. Phys. J.2B, 217 (200J).

[8] R. Bruinsma, Phys. Rev. BO, 289 (1984.

[9] C. Hartzstein and O. Entin-Wohiman, Phys. Rev3BR 491
(1985.

[10] Of course, we are interested in the thermodynamic lidit:
—»00,

[11] C.K. Hall and G. Stell, Phys. Rev. & 1679(1973.

[12] This corresponds to the case when the matrix-fluid attraction
equals one half of the fluid-fluid attractiok:=1/2. In this case
the model is spin-flip symmetric & =0, which results in the
symmetric binodal with critical point at=1/2.

[13] To be precise, this fraction equalspg -

[14] There is a one-to-one correspondence betvsélh and's(&)
through Eq.(36).

[15] The bounds may be improved by iterations:

Anin— H+min[ (k—1)H+u(hyyin) KU1,

himax—H +mMad{ (k= 1)H+u(hya) KU,

but even this procedure does not resulekxactbounds.

026124-12



MODEL FLUID IN A POROUS MEDIUM: RESULTS.. .. PHYSICAL REVIEW E 68, 026124 (2003

[16] W. H. Presset al, Numerical Recipes in CCambridge Uni- not resolve and hence continue to use this term throughout the
versity Press, Cambridge, England, 199%haps. 12 and 13. paper to emphasize distinction betweggh) ands(h).

[17] R.R. Levitskii, S.I. Sorokov, and R.O. Sokolovskii, Condens. [21] This is also true for the peaks in Fig. I/(T.=0.4). Their
Matter Phys.7, 117(1996; 10, 67 (1997. height only slightly increases upon increasing the resolution

[18] R. O. Sokolovskii, M. E. Cates, and T. G. Sokolovsgkapub- from 216 to 2'7.
lished; for the Bethe approximation treatment of the special[22] It means only thathe contribution to nis very small in this
caseH=0, see Ref[17]. case. If we consider the density paccessiblevolume n’

[19] H remains unchanged when all spins and fields K) change =n/(1-x), where inaccessible fraction is defined by Eq.
sign simultaneously. (44) for IC fluid, andx=0 for GCE (since closed pores are

[20] If q(h) really has step discontinuities, it is incorrect to call it a accessible in GCE the differenceAn’ =ngce—njc is notice-
“continuous spectrum.” But we are not sure there are any real  able for both H=J and H=-J cases. In factAn;_,
discontinuities(only very steep slopes that our numerics can- = fAn,;—?J.
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