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Model fluid in a porous medium: Results for a Bethe lattice

R. O. Sokolovskii,* M. E. Cates, and T. G. Sokolovska†

School of Physics, JCMB Kings Buildings, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
~Received 6 May 2003; published 22 August 2003!

We consider a lattice gas with quenched impurities or ‘‘quenched-annealed binary mixture’’ on the Bethe
lattice. The quenched part represents a porous matrix in which the~annealed! lattice gas resides. This model
features the three main factors of fluids in random porous media: wetting, randomness, and confinement. The
recursive character of the Bethe lattice enables an exact treatment, whose key ingredient is an integral equation
yielding the one-particle effective field distribution. Our analysis shows that this distribution consists of two
essentially different parts. The first one is a continuous spectrum and corresponds to the macroscopic volume
accessible to the fluid, the second is discrete and comes from finite closed cavities in the porous medium.
Those closed cavities are in equilibrium with the bulk fluid within the grand canonical ensemble we use, but
are inaccessible in real experimental situations. Fortunately, we are able to isolate their contributions. Separa-
tion of the discrete spectrum facilitates also the numerical solution of the main equation. The numerical
calculations show that the continuous spectrum becomes more and more rough as the temperature decreases,
and this limits the accuracy of the solution at low temperatures.

DOI: 10.1103/PhysRevE.68.026124 PACS number~s!: 05.50.1q, 64.70.Fx, 75.10.Nr, 64.60.2i
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I. INTRODUCTION

When fluids are adsorbed in porous materials, they
have very differently from what we know in the bulk. Th
happens in both high-porosity materials, such as silica a
gels, and low-porosity materials, such as Vycor glass. E
an aerogel that occupies a few percent of the total volu
significantly deforms and reduces the gas-liquid binoda
the fluid. At least three factors affect phase equilibrium
fluids in porous media: wetting, randomness, and confi
ment by the matrix. A number of models exist that emphas
one or two of those factors, and they greatly facilitate und
standing of possible behaviors of the fluid in the porous m
dia ~see review in Ref.@1#!. But theoretical models that tak
into account all three factors appear to be extremely har
deal with. All existing microscopic theories are inconclusi
even concerning the qualitative behavior of the gas-liq
binodal in the porous medium. Conventional approximat
schemes yield very different results depending on the mo
and on the level of approximation@2,3#. The Monte Carlo
simulations suffer from long relaxation times and are p
formed in a very limited simulation box@1,4,5#. This makes
any exactly treatable model especially desirable. We s
consider such a model, which features all the three factor
derives from the well-known lattice gas model of a fluid. W
shall consider here only the simplest representation of a
dom porous medium~quenched impurities of equal size!.
The model is exactly solvable on the Bethe lattice, in
sense that we can derive a closed integral equation for
local field distribution. Related approaches, leading to si
lar equations, were previously known in the context of s
glasses@6,7# and the Random Field Ising model@8,9#. The
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resulting integral equation has an interesting structure, wh
means that although numerical solution is relatively straig
forward at high temperature, as temperature is lowered
field distribution ~and hence also the numerics! becomes
more and more involved. This problem is also worse close
the percolation threshold of the porous medium.

The Bethe lattice is defined on a large uniformly branc
ing tree of which the Bethe lattice is the part far from a
perimeter site.~This is distinct from a Cayley tree, which
includes all parts.! The Bethe lattice should not be confuse
with the Bethe approximation, which usually denotes a se
mean-field-like self-consistency equations for order para
eters. The Bethe approximation is closely related to the c
ter variation method or cluster approximation, which deri
these equations from truncated cluster expansion of ei
the free energy or entropy functional employing seve
variational parameters. For many models these approxi
tions become exact on the Bethe lattice, but not in the c
studied here~except for special choices of parameters!. This
is a part of the motivation for the exact analysis presen
below. Another important goal is to rectify a shortcoming
the grand canonical ensemble when dealing with fluids
porous media. This ensemble allows fluid to equilibra
throughout the pore space, including closed pores that
inaccessible to fluid in reality. For the Bethe lattice we a
able to isolate and remove the effects of these closed po

We shall formulate the model and present the basic eq
tions in Sec. II. The analysis of Sec. III will bring forwar
the notion of finite clusters and their importance for a corr
description of the fluid. Details of the numerical algorith
and computer-aided results will be presented in Sec. IV. S
tion V contains our conclusions.

II. THE MODEL

In lattice models of a fluid, the particles are allowed
occupy only those spatial positions that belong to sites o
chosen lattice. The configurational integral of a simple flu

i,

i,
©2003 The American Physical Society24-1



a
s
n

th

pa
e
o
i

er
o

ol

hb

t o
ex
g
u

om
im

te

u

tio
s.
ex

ee
tit

d
u
h

l
fore

id

e-

ch
l. It

as
rm
e.

a-
re

al-

SOKOLOVSKII, CATES, AND SOKOLOVSKA PHYSICAL REVIEW E68, 026124 ~2003!
is thereby replaced by the partition function

Z5Tr exp~2bH!, b51/~kBT!,

H5H2mN52
1

2 (
i j

I i j ninj2m(
i

ni , ~1!

whereni , which equals 0 or 1, is the number of particles
site i ( i 51, . . . ,V, whereV is the number of the lattice site
@10#!. Tr means a summation over all occupation patter
The total numberN of particles is allowed to fluctuate;m is
a chemical potential, which should be determined from
relation

N5K (
i

ni L
H

; ^•••&H5Z21Tr~••• !exp~2bH!. ~2!

Since particles cannot approach closer than the lattice s
ing allows, lattice models automatically preserve one ess
tial feature of the molecular interaction: nonoverlapping
particles. The lattice fluid with nearest-neighbor attraction
known to demonstrate the gas-liquid transition only. Nev
theless, the lattice gas with interacting further neighbors p
sesses a realistic~which means argonlike! phase diagram
with all the transitions between the gaseous, liquid, and s
phases being present@11#. In this paper we deal only with
fluid phases and restrict ourselves to the nearest-neig
interaction.

The fluid adsorbed in the porous solid can be though
as residing on a lattice, of which a fraction of sites are
cluded or preoccupied by particles of another sort. Althou
in practice these blocked sites, representing the solid, m
form a connected network~if the solid is to remain static!,
we ignore this here and allow sites to be blocked at rand
Thus, we have to consider the lattice gas with quenched
purities, whose Hamiltonian is given by@2#

H52I (̂
i j &

ninj2K(̂
i j &

nixj2m(
i

ni , ~3!

where(^ i j & means summation over all nearest-neighbor si
and quenched variablesxi describe the presence (xi51) or
absence (xi50) of a solid particle at sitei. Each site of the
lattice can be either empty (xi50, ni50), occupied by a
fluid particle (xi50, ni51), or filled with a particle belong-
ing to the porous solid and therefore inaccessible to the fl
(xi51, ni50). The first term of Eq.~3! describes the
nearest-neighbor attraction between the fluid particlesI
.0), the second one corresponds to the fluid-solid attrac
(K.0) or repulsion (K,0) on the nearest-neighbor site
The hard-core repulsion is taken into account by mutual
clusiveness of particles:xi1ni<1.

It is quite customary to establish the connection betw
lattice gases and the Ising model. Indeed, a simple subs
tion Si52ni21 transforms~1! into the Ising Hamiltonian. In
the Ising model languageSi521 means an empty site, an
Si51 corresponds to a site occupied by a fluid particle. C
rent model~3! is equivalent to the diluted Ising model wit
random surface fieldD:
02612
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H52(̂
i j &

Ji j SiSj2(
i

hiSi1const, ~4!

Ji j 5Jyiyj , hi5yiH1D i ,D i5yiH̄(
j

xj , ~5!

J5I /4, H5m/21zI/4, H̄5K/22I /4. ~6!

Here yi512xi describes the accessibility of sitei to the
fluid particles; the constant term in Eq.~4! embraces severa
pieces that depend only on quenched variables and there
do not contribute to the thermodynamics;z is the coordina-
tion number of the lattice; the sum onj in Eq. ~5! spans
nearest-neighbor sites to sitei. When deriving Eq.~4! we
used the equalityni5niyi . D i is a random field correlated to
surface sites:D iÞ0 at the sites that are accessible to the flu
(yi51), and are in contact with the solid~at least one of the
neighbor sites hasxjÞ0). WhenH̄50, Eq. ~4! is a Hamil-
tonian of the diluted Ising ferromagnet, and we shall fr
quently refer to this limiting case throughout the paper.

The grand thermodynamic potential of the model is

F52kBTK ln(
S1

•••(
SV

exp~2bH!L
$x%

, ~7!

^~••• !&$x%5 (
x150

1

••• (
xV50

1

r~$xi%!~••• !, ~8!

where the distribution functionr($xi%) is a quenched one
that describes the distribution of solid particles in space.

We shall study this model on the Bethe lattice, whi
permits us to calculate an exact thermodynamic potentia
is known that many problems on treelike structures, such
that depicted in Fig. 1, can be solved iteratively. The te
‘‘Bethe lattice’’ refers to an infinitely deep part of such a tre

FIG. 1. A schematic picture of the Bethe lattice with coordin
tion numberz54. The arrowheads do not mean that the links a
asymmetric, they just illustrate the way the partition function c
culation proceeds~see text!.
4-2
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Each site on thenth level hask5z21 neighbors at the
(n11)th level and one neighbor at the (n21)th level. The
partition function of the model can be calculated recursive
from upper levels to the bottom. For example, let us cons
the cluster of sites framed by the dashed box in Fig. 1, wh
k53. The following relation~which holds for allk) shows
how tracing out spins at the upper level forms an ‘‘effecti
field’’ on the lower level:

(
S1

•••(
Sk

expS bS0(
l 51

k

J0lSl1b(
l 50

k

hlSl D
5F)

l 51

k

C~J0l ,hl !Gexp~bh̃0S0!, ~9!

h̃05h01(
l 51

k

U~J0l ,hl !, ~10!

U~J,h!5b21a tanh@ tanh~bJ!tanh~bh!#, ~11!

C~J,h!52
cosh~bJ!cosh~bh!

cosh@bU~J,h!#
. ~12!

We have thus obtained an effective fieldh̃0, which is a sum
of the original fieldh0 and k contributions from the uppe
branches. We can proceed this way recursively downw
giving

h̃i5hi1(
j 51

k

U~Ji j ,h̃ j ! ~13!

at each level. In the nonrandom case, whenhi5h and Ji j
5J, the effective field deep inside the tree satisfies the sta
point relation that follows from Eq.~13!:

h̃5h1kU~J,h̃!. ~14!

For our model~4!, we can expect that a properly define
effective fielddistribution tends to a stable limiting form a
deep levels of the tree.

Let us consider the probabilityQi(y,h)dh that yi5y and
h̃i5h:

Qi~y,h!5^dyyi
d~h2h̃i !&$x% , ~15!

where d(h) stands for the Dirac distribution, anddab is a
Kronecker’s delta (dab equals 1 ifa5b, and equals 0 other
wise!. Qi(0,h) is the effective field distribution at a matri
site, andQi(1,h) is the field distribution for a site accessib
to fluid. It is easy to see from Eqs.~13! and ~5! that when
yi50, Ji j 50, and hi50, the effective fieldh̃i50, thus
Qi(0,h) does not depend oni and has a simple form

Qi~0,h!5Q~0,h!5c0d~h!, ~16!

where we define

cy[^dyyi
&$x% , ~17!
02612
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so thatc0 is a fraction of the sites occupied by the matri
When we move recursively from the surface of the tr
deeper into its interior,Qi(1,h) changes, but should tend to
fixed point at infinitely deep levels of the tree:Qi(1,h)
→Q(1,h). It follows from Eq. ~13! that the resulting distri-
bution obeys

Q~1,h!5K yiE F)
j 51

k

dhjQ~yj ,hj !G
3dS h2hi2(

j 51

k

U~Ji j ,hj !D L
$x%

. ~18!

In writing this equation, and throughout the following, w
now specialize to the case where there is no correlation
the $yi% variables~which specify the sites occupied by th
solid matrix! beyond nearest-neighbor correlations, whi
are permitted. In this case, taking into account thatk upper
branches do not interact until they meet the chosen site,
fields $hj% are uncorrelated.@In more general cases,yj at
different branches are correlated; the joint distributi
Q(y1 ,h1 , . . . ,yk ,hk) cannot be decoupled as a product
Q(yj ,hj ); and Eq.~18! is invalid.# Using the integral repre-
sentation of thed function

d~h!5E dj

2p
exp~ i jh!, ~19!

we can factorize thed function in Eq.~18! and get

Q~1,h!5K E dj

2p
yiexp@ i j~h2hi !#)

j 51

k E dhjQ~yj ,hj !

3exp@2 i jU~Ji j ,hj !#L
$x%

. ~20!

Configurational averaging with respect to the quenched v
ables^•••&$x% in Eq. ~20! can now be performed explicitly
and it yields

Q~h!5E dj

2p
exp@ i j~h2H !#Q̃k~j!, ~21!

Q̃~j!5p0exp~2 i jH̄ !1p1E dh8Q~h8!exp@2 i ju~h8!#,

where we introduced the notationsQ(h)5Q(1,h)/c1 , u(h)
5U(J,h), pa5wa1 /c1, and

wab[^dayi
dbyj

&$x% ~22!

is the probability to findyi5a and yj5b at a randomly
chosen pair of nearest-neighbor sitesi and j. For example,
w115^yiyj&$x% is a probability that both sites in the pair a
accessible to fluid. For each site accessible to the fluid,p1
specifies the probability that a given nearest-neighbor sit
accessible as well;p0512p1 is, correspondingly, the prob
ability that this neighbor site is occupied by the solid.
4-3
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Note thatQ(h) specifies the distribution of the effectiv
field created byk ‘‘upper branches.’’ The complete one-si
field deep inside the tree consists of contributions com
from all z nearest neighbors, and its distribution takes in
accountz equivalent branches

Qz~1,h!5K yidS h2hi2(
j 51

z

U~Ji j ,h̃ j !D L
$x%

5c1E dj

2p
exp@ i j~h2H !#Q̃z~j!, ~23!

Qz~0,h!5c0d~h!. ~24!

This distribution determines the one-site average values.
example, in the magnetic interpretation of model~3!, this
total one-site field permits to calculate the average magn
zation ~per magnetic site!

m5^^niSi&H&x /c15E dhQz~h!tanh~bh!. ~25!

Calculation of other thermodynamic properties is less str
forward. The thermodynamic potential of the tree is a sum
‘‘site’’ and ‘‘link’’ contributions @6,7#:

bF~$x%!5k(
i

ln Triexp~2bHi !2(̂
i j &

ln Tri j exp~2bHi j !,

~26!

whereHi andHi j are Hamiltonians of one site and a pair
sites, respectively, and the traces act only on the corresp
ing local degrees of freedom. The configurationally avera
thermodynamic potential of the Bethe latice must take i
account only deep levels of the tree. We do this by assign
the stable point field distribution to all the sites when doi
configurational averaging. The Bethe lattice thermodyna
potentialF is, therefore, given by

bF/N5b^F~$x%!&$x% /N5k (
yi50

1 E dhiQz~yi ,hi !ln Tri

3exp~2bHi !2
z

2 (
yi50

1

(
yj 50

1
wyiy j

cyicy j
E dhiQ~yi ,hi !

3E dhjQ~yj ,hj !ln Tri j exp~2bHi j !, ~27!

whereHi andHi j depend on both fluid~S! and matrix (y or,
equivalently,x) variables:

Hi5hiSi ,Hi j 5hiSi1hjSj1Ji j SiSj . ~28!

III. THE SOLUTION

The result of the preceding section is that thermodyna
ics of the model is determined by the one-site field distrib
tion Q(h), and this distribution satisfies integral equati
~21!. Equations of this type have been known previously
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the context of spin glasses@6,7# and the Random Field Ising
model @8,9#. We did not encounter this kind of equation fo
the current model in the literature, even for the limiting ca
of diluted ferromagnet (H̄50). In this section we investigate
the ways of solving this equation.

For the diluted Ising ferromagnet in zero external fie
when H5H̄50, Q(h)5d(h) is always a solution of Eq.
~21!, and it yields zero magnetization (^Si&50) or, in the
fluid model language, the occupancy number equals one
(^ni&51/2) at all sites. This is known as the trivial solutio
in all calculations leading to an analytical result, and this
the only solution at the temperatures above critical. What
the nontrivial solutions?

When there is no solid medium (c151) or when the
solid sites are arranged in a nonporous block or slab wit
smooth surface (p151), the solution isQ(h)5d(h2h̃),
and h̃ is given by Eq.~14!. This equation has a nontrivia
solution (h̃Þ0) at low temperatures: T,Tc , Tc
5J/@kBa tanh(1/k)#. In this case the results of the cluster~or
Bethe! approximation become exact.

When quenched chaos is present (p1Þ1), and H5H̄
50, the trivial solution becomes unstable at temperatu
below

Tc5J/$kBa tanh@1/~kp1!#% ~29!

~this is an accurate result!, signifying the appearance of th
spontaneous magnetic order (^Si&Þ0). Importantly, though,
the cluster approximation is not accurate when both m
netic ordering and quenched disorder are present. In the
eral case (H̄Þ0,HÞ0), we do not have any simple formul
for the critical temperature or the field distribution. In wh
follows, we study the structure of this distribution mo
closely.

First, we shall consider the simple limiting case of dilut
magnet without surface field (H̄50) @12#. In this case matrix
sites break the links between spins, but do not introduce
field that breaks the spin-flip symmetry. It follows from E
~29! that whenp1,1/k, Tc does not exist, and the spontan
ous magnetic order does not appear.~The reason is that in
this case the system is not percolated: there is no infi
cluster of linked spins, only finite clusters, and in finite sy
tems the spin-flip symmetry cannot be spontaneously b
ken.! Let us realize that in this system for any matrix~at any
value of p1, except 0 or 1! there is a finite fraction@13# of
spins whose links are all broken, because all their neighb
ing sites are occupied by the matrix. The effective field
those sites equals just an external fieldH. Thus, it is likely
that the solutionQ(h) contains a term ind(h2H). In the
case of zero external field (H50) one easily finds that a
solution of the formQ(h)5A0d(h)1q(h) does satisfy Eq.
~21!, and one gets

A05~p01p1A0!k, ~30!

q~h!5E dj

2p
exp~ i jh!@$p01p1A01q̃~j!%k2A0#,

~31!
4-4
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q̃~j!5p1E dh8q~h8!exp@2 i ju~h8!#,

where we expectq(h) to be a nonsingular function, becau
a d function positioned in any other place@Axd(h2a),a
Þ0# or a set of suchd functions does not lead to sel
consistent equations of the required form.

Let us show thatA0 has a simple physical meaning
namely, it equals the probability that allk upper branches ar
finite. Consider first the probabilityPf that a branch is finite.
It consists of two possibilities: either the first link is broke
~with probability p0), or it is unbroken, but all farthe
branches connected to it are finite~with probability p1Pf

k).
This yields Pf5p01p1Pf

k . Then, the probability thatk
given branches are finite equalsA05Pf

k and satisfies Eq
~30!. Obviously, Eq.~30! always has the solutionA051,
which leads to the trivial solution forQ(h) because of the
normalization condition*Q(h)dh51. A051 is the only so-
lution whenp1,1/k, as discussed above. At the percolati
point (p151/k), it is a twofold solution, which signifies a
bifurcation. Whenp1.1/k, a solution forA0 in the interval
~0,1! always exists.

When HÞ0, the previous ansatz thatQ(h)5Ad(h2H)
1q(h) does not work:d(h2H) placed into the right-hand
side ~rhs! of Eq. ~21! generates, under iteration of the equ
tion, a set ofk different d functions, as does anyd function
positioned in some other place. This seemingly rules out
idea of finding the discrete levels in this case, but a fu
solvable casez52 ~the linear chain, see Appendix A! resur-
rects the hope. In that case solution contains aninfinite series
of d functions. Therefore, in the general case we shall s
the solution in a form of a sum of an infinite set ofd func-
tions and a nonsingular function:

Q~h!5(
l 51

`

ald~h2hl !1q~h!. ~32!

We now show that such a solution can really be obtain
The point is that, similarly to the zero-field case (H50), the
equation for the discrete spectrum separates from the e
tion for the nonsingular partq(h). Placing Eq.~32! into Eq.
~21!, we get the equation for the discrete spectrum

(
l 51

`

ald~h2hl !5E dj

2p
exp@ i j~h2H !#

3Fp01p1(
l 51

`

alexp@2 i ju~hl !#G k

.

~33!

The number ofd functions is infinite, but their cumulative
weight remains finite, and

(
l 51

`

al5A0 . ~34!
02612
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The latter relation can be obtained by integrating Eq.~33!
with respect toh and noting that the total weight ofd func-
tions satisfies Eq.~30!. Equation ~34! means that the ob
tained discrete spectrum is just the singleh50 level that we
had in the caseH50 split by the external field. Each (al ,hl)
pair corresponds to a certain finite tree ‘‘growing’’ up fro
the given site. For example, (a1 ,h1)5(p0

k ,H) corresponds
to the ‘‘zero’’ tree, when allk links to the upper sites are
broken; naturallyh15H, anda1 equals the probability tha
all the neighboringk sites at the upper level are inaccessib

Now let us turn back to the most general case, when b
the surface and the external fields are present (H̄Þ0,H
Þ0). Inserting into Eq.~21!

Q~h!5s~h!1q~h!,s~h![(
l 51

`

ald~h2hl !, ~35!

one can obtain explicit expressions for the discretes(h) and
continuousq(h) parts of the spectrum:

s~h!5E dj

2p
exp@ i j~h2H !# s̃k~j!, ~36!

q~h!5E dj

2p
exp@ i j~h2H !#$@ q̃~j!1 s̃~j!#k2 s̃k~j!%,

~37!

where

s̃~j!5p0exp~2 i jH̄ !1p1(
l 51

`

alexp@2 i ju~hl !#, ~38!

q̃~j!5p1E dh8q~h8!exp@2 i ju~h8!#. ~39!

Note that Eq.~38! for the discrete spectrum has a clos
form and does not depend onq(h), whereas the equation fo
q(h) does includes(h). This is because the discrete spe
trum comes from finite trees, whereas the continuous sp
trum is an attribute of the infinite volume. Finite branch
know nothing about the infinite volume; therefore,s(h) does
not depend onq(h). At the same time, at any given site finit
branches may connect onto the infinite tree; therefore,
equation for q(h) does depend on the discrete spectru
s(h).

Let us consider the structure of Eq.~37!. It can be rewrit-
ten in the form

q~h!5E dj

2p
exp@ i j~h2H !#(

l 51

k S k

l D q̃l~j!s̃k2 l~j!.

~40!

Let us recall that by construction of Eq.~21! for Q(h) if we
insert some field distribution asQ(h) in the rhs, we obtain in
the left-hand side~lhs! the field distribution one level down
the tree. The same property holds for Eq.~40!. Then Eq.~40!
permits a clear interpretation: each term of( l mixes into the
next-level distribution the possibility thatl branches
4-5
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SOKOLOVSKII, CATES, AND SOKOLOVSKA PHYSICAL REVIEW E68, 026124 ~2003!
are infinite, with the otherk2 l finite; l runs from 1 tok, the
l 50 term was rightly eliminated by the last term in Eq.~37!,
because this term would give rise to the possibility of a fin
tree and would give a discrete spectrum contribution. T
interpretation makess̃(j) andq̃(j) responsible for finite and
infinite branches, respectively. The surface fieldH̄ does not
enter Eq.~37! explicitly; its influence onq(h) is mediated by
the discrete spectrums(h). In a way,s(h) @or, equivalently,
s̃(j) @14## encapsulates the surface influence. The only
plicit reminder of a porous medium in the equation for t
continuous spectrum is thep1 multiplier in Eq.~39!, indicat-
ing that links between sites are not always present.

The complete effective field acting on an accessible
Qz(1,h) @defined by Eq.~23!# likewise consists of a discret
spectrumsz(h), and a continuous oneqz(h):

Qz~1,h!5c1sz~h!1c1qz~h! ~41!

sz~h!5E dj

2p
exp@ i j~h2H !# s̃z~j!, ~42!

qz~h!5E dj

2p
exp@ i j~h2H !#$@ q̃~j!1 s̃~j!#z2 s̃z~j!%.

~43!

The total weight of the discrete part

x5E sz~h!dh5A0
z/k ~44!

equals the probability that allz branches connected to th
site are finite. When this happens, the site belongs to a fi
closed volume.

When considering the fluid in the grand canonical e
semble~as we have done so far! all sites are in equilibrium
with an implicit bulk fluid, whose temperature and chemic
potential are parameters that describe this equilibrium. Bu
real experiments fluid particles cannot access any disc
nected pore volumes@described bysz(h)], and those parts o
the system do not respond to changes of the chemical po
tial. Were we considering a magnetic system, spins in th
finite separated clusters would be able to react to change
external fieldH, and thermodynamic potential~27! would be
valid. In contrast, in order to describe the experimental s
ation for a fluid in porous medium, we have to exclude t
contribution of finite volumes to the thermodynamic pote
tial. Fortunately, we are now able to separate this contri
tion because finite branches always generate a discrete
trum, in contrast to the infinite cluster, which yields th
continuous distribution.

Inserting Eqs.~35! and ~41! into the expression for the
thermodynamic potential~27!, we can identify three distinc
contributions of finite volumes
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kc1E dhisz~hi !ln Triexp~2bHi !U
yi51

,

2
z

2
w11E dhis~hi !

3E dhjs~hj !ln Tri j exp~2bHi j !U
yi51,yj 51

,

2zw10E dhis~hi !ln Tri j exp~2bHi j !U
yi51,yj 50

.

The first term above corresponds to an accessible site w
branches are all finite, the second one describes a linked
of accessible sites with outer branches finite, and in the th
term one site of the pair is accessible to the fluid, but all
branches are finite. Note that the division into these th
terms does not reflect the presence of different types of
but reflects the subdivision into site and link contributions
Eq. ~26!.

Dropping these ‘‘finite volume’’ contributions~and con-
stant terms corresponding to the sites occupied by the
trix! we obtain the thermodynamic potential of the fluid
the accessible volume as

bF/N5kc1E dhiqz~hi !ln Triexp~2bHi !U
yi51

2
z

2
w11E dhiq~hi !E dhj@q~hj !

12s~hj !# ln Tri j exp~2bHi j !U
yi51,yj 51

2zw10E dhiq~hi !ln Tri j exp~2bHi j !U
yi51,yj 50

.

~45!

The procedure of ‘‘contribution classification’’ is especial
simple when we consider the expression for the density~per
free volume! n5^^ni&H&$x% /c1. The grand canonical en
semble~GCE! predicts

n5E dh@qz~h!1sz~h!#
1

2
@11tanh~bh!#5

m11

2
,

~46!

whereas when we take into account that closed finite po
are inaccessible to the fluid, the microscopic fluid density
those sites has to be set to 0, and we obtain the corre
‘‘infinite cluster’’ ~IC! expression

n5E dhH qz~h!
1

2
@11tanh~bh!#1sz~h!30J

5F12x1E dhqz~h!tanh~bh!G /25
m11

2
2Dn,

~47!
4-6



te
e

er

iv

a
o

s
r
ra
ely
th
a-

e
o

n
rre
t
w
el

s.
%

h-
vely
e
’s

ar a
the

ete

l
of
n-

but
of

.

ch

pro-

are

-

ffi-
cal

m

th

MODEL FLUID IN A POROUS MEDIUM: RESULTS . . . PHYSICAL REVIEW E 68, 026124 ~2003!
where x is a fraction of free sites belonging to the fini
cavities, defined by Eq.~44!, and the difference between th
GCE and IC densities,

Dn5E dhsz~h!
1

2
@11tanh~bh!#, ~48!

is simply the number of fluid particles in finite cavities p
number of the free sites.

IV. NUMERICAL CALCULATIONS

In order to solve main equation~21! we have to calculate
the discrete spectrum~36! and use it when solving for the
continuous part of the field distribition via Eq.~37!. The
procedure of the discrete spectrum calculation is iterat
We place the zeroth approximations(h)5p0

kd(h2H2kH̄)
into the rhs of Eq.~36! and obtain in the lhs a sum ofk11 d
functions, one of which coincides with the initial one and h
the correct weightp0

k . Placing the new approximation int
the rhs of Eq.~36! recursively, we can obtain as many term
as we need. The unpleasant feature is that the numbe
levels in the spectrum grows exponentially during the ite
tions, and many levels have negligible weight. Fortunat
one can drop the low-weight levels at each step, because
produce only lower-weight levels during the following iter
tions.

Let us note that the weights ofd functions depend only on
parameterp1, which is determined by the structure of th
solid matrix. The positions of the functions depend also
other parameters (T, H, H̄, andJ). As we discussed in the
preceding section, the discrete spectrum corresponds to fi
trees growing from a site. Each level in the spectrum co
sponds to a tree of a certain size and form, and its weigh
a probability to find such a tree in the system. Figure 2 sho
an example of the discrete spectrum for the case of a r

FIG. 2. The coordinates and weights ofd peaks in the discrete

spectrums(h) for k52, H̄50, p150.9, T/Tc50.8; A051/81; the
132 heaviest levels are shown forH/J50.1, H/J50.4, andH/J
51. The weights for all the three cases are the same, only
positions of thed peaks differ.
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tively sparse solid that blocks only a small fraction of site
In that case the 20 ‘‘heaviest’’ levels carry more than 99.96
of the total weight. Asp1 approaches the percolation thres
old, the convergence of the series becomes progressi
poorer. For example, the 200 heaviest levels in the cask
52, p150.6, contain only 87% of the discrete spectrum
weight. This naturally agrees with the fact that there appe
lot of large finite trees near the percolation point, and
number of forms of a tree quickly~combinatorially! grows
with its size. One other interesting feature of the discr
spectrum is its bandlike structure, withal densely grouped
around certain values, andhl subdividing into several
branches asH increases.

Onces(h) is calculated to a given high accuracy@defined
by e5(A02( lal)/A0], we can proceed by solving Eq.~37!.
A numerical algorithm must represent the functionq(h) as
an M vector q(hi), hi5hmin1iDh, Dh5(hmax2hmin)/M, i
50, . . . ,M21, with M sufficiently large. It is helpful to
note that q(h) is nonzero only on a finite interva
@hmin ,hmax#: this permits use of the Fourier series instead
the Fourier integrals. The lower and upper limits of this i
terval may be estimated as

hmin5H1min@2kJ,~k21!H̄2J#,

hmax5H1max@kJ,~k21!H̄1J#. ~49!

These bounds are far from exact at high temperatures,
this does not make a significant impact on the efficiency
the calculations@15#.

The numerical solution of Eq.~37! is an iterative process
We start from some initial distribution~this may be a uni-
form distribution! and insert it into the rhs of Eq.~37!. The
resulting lhs is a new approximation to the solution. Ea
iteration produces the field distributionq(h) one level deeper
then the tree. Therefore, such iterations must converge
vided the stable point distribution defined by Eq.~21! exists
and numerical errors introduced by the discretization
small enough. Naive quadratures for Eq.~21! would result in
a formula

q~hi !5 (
j 512M

M21

exp@ i j j~hi2H !#$@ q̃~j j !1 s̃~j j !#
k2 s̃k~j j !%,

~50!

q̃~j j !5p1Dh (
l 50

M21

q~hl !exp@2 i j ju~hl !#, ~51!

j j52p j /~hmax2hmin!,

which takes of orderM3 calculations at each iteration, be
cause each of the indicesi, j, andl in Eqs.~50! and~51! take
M essentially distinct values. This quadrature is both ine
cient and incorrect. First, to implement the correct numeri
algorythm, it is important to note that exp@2iju(h8)# is a
quickly oscillating function ofh8 when j is large, and this
requires a special quadrature when calculating theh8 integral
in Eq. ~37!. Second, the Fast Fourier Transform algorith

e
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takes onlyO(M lnM) steps to perform the summation ovej
in Eq. ~50! for all i. Also, Presset al. @16# describe an algo-
rithm that permits simultaneous calculation ofM integrals
over h8 in Eq. ~37! using again onlyO(M ln M) operations.
Therefore, with advanced algorithms, each iteration co
O(M ln M) arithmetic operations. This is a dramatic ga
with respect to the quadratures estimate ofO(M3), because
as seen below,M is typically many thousands.

The numerical results we report here are limited to co
dination number 3 (k52), and a completely random matrix
when there is no correlation between quenched varia
even at the nearest-neighbor sites; hencewab5cacb and pa
5ca . Since we are studying the behavior of a fluid in
porous media, we can set aside very dense matrices
p1,1/k; these have no infinite connected volume access
to the fluid, so thatq(h)50, and thermodynamic potentia
~45! equals 0.

First, we shall consider the simpler case of a diluted Is
ferromagnet (H̄50), which corresponds to fluid in the po
rous matrix with a moderate fluid-matrix attraction (K
5I /2). In this case the exact critical temperature is kno
from Eq. ~29!; whenH50 andT.Tc , Q(h)5d(h) andm
50 (n51/2), while at lower temperatures there are tw
symmetric nontrivial solutionsQ1(h)5Q2(2h), with
Q1(h)5A0d(h)1q1(h), A05(c0 /c1)2. The temperature
dependence ofq1(h) is shown in Fig. 3. One can see th
theq1(h) line repeats itself, but not in a trivial fashion. Th
continuous field distribution acquires even more structure
denser matrices~Fig. 4!. At low temperaturesq1(h) be-
comes a set of increasingly sharp peaks, and this gre
increases the errors introduced by the discretization in
numerical algorithm. Therefore, this algorithm does not wo
at very low temperatures. Nevertheless, using extremely
discretization~we usedM up to 2175131 072), we covered
an interesting range of temperatures. With the algorithm
described we were able to reachT/Tc50.4. In the magnetic
interpretation of model~3! the solutionsQ1(h) andQ2(h)
correspond to exactly opposite magnetizations (m1

52m2), which reflects the fact that direction of the spo
taneous~zero-field! magnetization is not predetermined.
the fluid interpretation, these two solutions form the tw
branches of the binodal@GCE: n15(m111)/2, n251
2n1]. Figure 5 shows the resulting GCE binodals at diffe
ent densities of the matrix. According to Eq.~48!, the ‘‘infi-
nite cluster’’ binodals for this particular case (H̄50) have
the same size and shape as GCE binodals; they are
shifted to lower densities byDn5x/2, Dn56.831024, 7.8
31023, 0.039, 0.15, forc050.1, 0.2, 0.3, and 0.4, respe
tively. In the general case (H̄Þ0), the density shift between
the GCE and IC binodals depends on temperature.

The binodal density~or zero-field magnetization, in th
Ising language! at zero temperature can be found from t
fact that in this case all the spins in the infinite cluster
aligned, whereas finite clusters do not contribute to the sp
taneous magnetization, and the magnetization~per magnetic
site! equals plus or minus the fraction of magnetic sites
longing to the infinite cluster:m1(T50)512x. This gives
the resulting half width of the binodal, which is depicted
02612
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the inset of Fig. 5 as a function of matrix densityc0. One can
see that the cluster approximation produces the binodals
are flatter at the top and have an incorrect width. For a lat
with only sparsely distributed solid sites, the cluster appro
mation results are quite accurate.

Now, let us consider instead the situation where there
no matrix-fluid attraction ~hard-core matrix!: K50, H̄
52J. Figure 6 shows how the field distribution at consta
chemical potential~fixed H) now changes with temperature
In the case depicted there is a competition between the
face field H̄52J,0 and the bulk fieldH50.21J.0. At
high temperatures, the effective field prefers the sign of
bulk field and is mainly positive. AtT/Tc,0.82, an alterna-
tive solution forq(h), which favors negative fields, corre
sponds to the global minimum of the thermodynamic pot
tial and becomes preferable. AtT/Tc50.82 the two solutions
yield the same value of thermodynamic potential at differ
fluid densities, and correspond to the two branches of
binodal. It should be noted thatTc is defined as given by Eq

FIG. 3. The continuous partq(h) of the effective field distribu-
tion for a weakly dilute Ising ferromagnet (c050.1) with H50, at
different temperatures below the critical point.
4-8
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FIG. 4. The continuous partq(h) of the effective field distribu-
tion for a strongly dilute~but still percolated! Ising ferromagnet
(c050.4) in zero external field at different temperatures below
critical point. Some pictures contain a dashed line, which shows
h.1 part ofq(h) at an enlarged scale~plotted against the righty
axes!.

FIG. 5. The high-density branch of the GCE binodal (n1) for

the model withH̄50 at different matrix densitiesc0. The low den-
sity branch is symmetric:n2512n1 . The percolation concentra
tion for the lattice used (k52) is c051/2. The inset shows the
dependence ofn1 at zero temperature on the matrix density. T
dotted lines represent the corresponding results of the cluster v
tion method@17#.
02612
~29! and is not at~but is close to! the critical temperature for
this matrix. Figure 7 shows the temperature dependenc
the fluid density at different values ofH. The jumps corre-
spond to coexistent densities at the binodal. One can see
in this case the binodal is not symmetric. The results
picted in Fig. 7 correspond to the ‘‘grand canonical fluid
described by Eqs.~27! and~46!. The fraction of the free sites
that belong to finite closed cavities@x5(c0 /c1)3# is as small
as 0.14% for this relatively sparse matrix; therefore, the b
odal of the ‘‘infinite cluster fluid,’’ which excludes their con
tribution, is indistinguishable on the plot from that depict
by the whole line in Fig. 7. Let us also note that due to
special symmetry of model~4! @19#, the binodal of sym-
metrical caseH̄5J (K52J, attractive matrix! coinsides
with that in Fig. 7 flipped with respect ton51/2 line.

Next, we would like to consider denser matrices, and h
the poor convergence ofs(h) leads to a problem. We did no
have this problem in the case of dilute magnet (H̄50), be-
cause its entire binodal, in view of spin-flip symmetry of th
special case, corresponded toH50, when the discrete spec
trum consisted of only one term:s(h)5A0d(h), which
could be exactly calculated for the matrix of any density@Eq.

e
e

ia-

FIG. 6. The effective field distributionQ(h) for a fluid in a

sparse hard-core matrix (H̄52J, c050.1) atH50.21J at different
temperatures. The crosses show weightsal and locationshl of lead-
ing d functions in the discrete part of spectrums(h)5( lald(h
2hl), plotted against the lefty axes. The lines depict the continu
ous part of the distributionq(h) ~against the righty axes!. The x
axis ish2H.
4-9
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~30!#. For the hard-core matrix (H̄52J) this no longer takes
place. Forc050.3 the 48 leadingd-functions ofs(h) contain
95.5% of its weight, 804 terms contain 98.6%. If we simp
ignore the residual weight and solve Eq.~37! with an incom-
pletes(h), the resultingq(h) strongly depends on the num
ber of terms taken into account ins(h) ~see Fig. 8!.

To overcome the problem, we use the following tric
First, we calculate the leading 2l terms ofs(h). They corre-
spond to 2l relatively small finite trees, because the larg
trees have smaller weight. Then we determine thel lightest
terms among them and addD5(A02( i 51

2l ai)/ l to their
weights. The resulting discrete distribution

s~h!5(
i 51

l

aid~h2hi !1 (
i 5 l 11

2l

~ai1D!d~h2hi ! ~52!

FIG. 7. The temperature dependence of the equilibrium fl

density at different values ofH for the model withH̄52J at matrix
densityc050.1. The numbers at the dashed lines are the value
the external fieldH. The lines jump over the phase separation
gion, delimited by the solid line. The binodal within the clust
approximation@18# is depicted with a dotted line.

FIG. 8. The field distribution for the model withH̄52J at
matrix densityc050.3, H50.61, andT/Tc50.64 calculated with
truncated discrete spectrums(h). One of the cases depicted~a!
corresponds to 48 leadingd-functions taken into account ins(h)
~all the terms with weightsal.1024). In the other case~b! there
are 804 terms ins(h) ~the terms with weightsal.1026).
02612
r

has the correct total weight. This way we distribute the mi
ing weight of large trees among the largest of those ta
into account. From the physical point of view this means t
we replace the ‘‘very large’’ branches by the ‘‘large’’ one
and in this way forbid ‘‘very wide’’ pores. The latter implie
a certain correlation in the matrix and is always an appro
mation, since when deriving Eq.~37! we permitted only the
nearest-neighbor matrix correlations. Anyway, the resu
must become accurate in the limitl→`, and we find that the
method converges already at smalll ~Fig. 9!. A remarkable
new feature ofq(h) in Fig. 9 is the presence of steps, a
companied by sharp peaks, especially visible ath2H
521.85 or 21.75. It is possible that these peaks are n
accurate~see Appendix B!, they could be numerical artifact
arising in places whereq(h) in reality has only a step@20#.
Note anyway that these peaks are notd functions; their
heights remain almost unchanged when we increase res
tion from M5214 to M5215, whereas if they wered peaks,
their heights would then double@21#.

Having overcome this convergence problem withs(h),
we can calculate phase diagrams for denser matrices~Figs.
10 and 11!. For these denser matrices, unlike the casec0
50.1, the difference between the grand canonical ensem
binodals and the infinite cluster ones becomes clearly visi
although the fraction of finite closed cavities is still not lar
@x(c050.2)51.6%, x(c050.3)57.9%]. This fraction
grows to 100% at the percolation point~which happens at
c050.5 for this lattice!, thus making a big difference nea
percolation.

One can see that GCE and IC binodals forH̄52J are
indiscernable, which indicates that for this case closed po
in GCE are almost empty, and their contribution is negligib
@22#. On the contrary, forH̄5J, they are almost saturate
with fluid, andDn is close to the fractionx of closed pores in
the matrix. This situation should also hold for strongly attra
tive or repulsive matrices:uH̄u.1. For dense enough matr
ces with smalleruH̄u, Dn will be nonzero for both negative

d

of
-

FIG. 9. The same as Fig. 8, but calculated with an adjus
discrete spectrums(h), Eq. ~52!. The arrows point to the groups o
al ’s raised byD. The resulting continuous spectra corresponding
~a! 48 and~b! 804 terms ins(h) are indistinguishable.
4-10
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and positiveH̄ and will depend on temperature.
In the above results for our numerical treatment of

exact integral equations, deviations from the cluster appr
mation are clearly visible in the phase diagrams~Figs. 5 and
7!, and become very large in some cases~Figs. 10 and 11!.
Note that the cluster approximation permits no simple w
round the failure of the grand canonical ensemble to prev
fluid from entering closed pores.

It is interesting to note that some other related approac
@2,3# predict an unusual double-hump binodal of the fluid
moderately dense strongly attractive or repulsive matrices~in
terms of the current model, this means largeuH̄u). Kierlik
et al. @3# considered an off-lattice molecular model of flu
in a quenched disordered configuration of spheres on
basis of a replica symmetric Ornstein-Zernike equation. T
studied a sequence of approximations, the first of which c

FIG. 10. The binodals for the models withH̄52J andH̄5J at
matrix densityc050.2. The bold lines~c! represent the ‘‘infinite
cluster’’ binodals. The thin dashed lines~b! are the grand canonica

ensemble binodals@in the H̄52J case this line is hidden by th
overlapping~c! line#. The binodals within the cluster approximatio
@18# are depicted with a dotted line~a!. The pairs of~a! and ~b!
binodals are symmetric with respect ton51/2. The pair of~c! lines
is symmetric with respect ton5(12x)/250.492. The small
squares on~b! and~c! lines are the actual data points through whi
the interpolating lines were drawn.

FIG. 11. The same as Fig. 10, at matrix densityc050.3. The
pair of ~c! binodals is symmetric with respect ton5(12x)/2
50.461.
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responded to the mean spherical approximation~MSA!, and
predicted a binodal of the usual form. The higher appro
mation yielded a binodal with two critical points or even tw
disconnected binodals. Their highest order approximat
again gave only one critical point, but predicted a shoul
on one of the binodal’s sides. The MSA applied to model~3!
on the five-dimensional fcc or bcc lattice@2# again predicted
a double-humped binodal. A problem identified for MSA w
that for the three-dimensional lattices it predicted a doub
humped binodal even for the bulk fluid without any poro
matrix. Therefore, the authors of@2,3# could not conclude
definitely about the existence of two critical points for the
models, despite the similarity of their results to the doub
humped binodals seen in the Monte Carlo simulations
similar models@4,5#. Our theory does not give any double
humped binodal, at least in the range of parameters we h
studied.

V. CONCLUSIONS

We considered the Bethe lattice model of fluid in a poro
medium. The recursive character of the Bethe lattice perm
an exact treatment, whose key ingredient is an integral eq
tion for the effective field distribution. Solutions of this equ
tion consist of a sum of discrete and continuous spectra,
these spectra have distinct physical interpretations. The
crete spectrum comes from disconnected finite pore spa
whereas the continuous spectrum is a contribution of
infinite pore space, which in reality is the only one accessi
to fluid. The continuous spectrum develops more and m
structure at low temperature, which means that a numer
solution for it becomes impractical below a certain tempe
ture. However, the physical results found for temperatu
above this threshold are both consistent and reasonable
spite use of a Bethe lattice they differ significantly from t
results calculated using the cluster~or Bethe! approximation,
which cannot handle the complexity of the field distributio
that we find.

The dichotomy between the two types of pore space m
tioned above is not exclusive to the Bethe lattice, but univ
sal. Any microscopic model of fluid in a random porous m
dia that uses the grand canonical ensemble will inclu
contributions of the finite cavities, unless this is carefu
subtracted off, as we managed to do for the Bethe lattice
the grand canonical ensemble, these cavities are in equ
rium with the external bulk fluid, but in real-world exper
ments they are inaccessible and do not respond to chang
chemical potential. This marks an important distinction b
tween models of fluids in porous media and disordered m
netic model to which they are equivalent in the grand cano
cal ensemble; for magnetism, finite clusters do contribute
the free energy and it is right to include them.
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APPENDIX A: SOLUTION OF THE INTEGRAL
EQUATION FOR THE FIELD DISTRIBUTION

FOR THE ONE-DIMENSIONAL CHAIN

In the one-dimensional chain,k51, and Eq.~21! can be
solved analytically. Performing first the integration with r
spect toj in the rhs of Eq.~21!, one gets

Q~h!5p0d~h2H2H̄ !1p1E dh8Q~h8!d„h2H2u~h8!…

5p0d~h2H2H̄ !1p1v̇~h2H !Q„v~h2H !…, ~A1!

where v(h) is the function inverse tou(h), that is,

v„u(h)…[h, and v̇(h) is its derivative. The above equatio
says thatQ(h) equalsp0d(h2H2H̄) for h in the close
vicinity of H1H̄, otherwise one has to look at the value
Q at v(h2H) and multiply it byp1v̇(h2H). This observa-
tion leads to a solution of the formQ(h)5( lald(h2hl).
The leadingd function is given explicitly in the rhs of Eq
~A1!, and positions of the furtherd functions are given by
relations

v~h22H !5h1 , v~h32H !5h2 ,•••. ~A2!

This means, in particular, that in the vicinity ofh2

Q~h!5p1v̇~h2H !Q„v~h2H !…

5p1v̇~h2H !p0d„v~h2H !2h1…

5p1p0d~h2h2!, ~A3!

and thereforea25p1p0. In general, one can find thatal
5p1al 21. Finally, we can write the solution in the form

Q~h!5p0(
l 51

`

p1
l 21d~h2hl !, ~A4!
.

l.

J.
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wherehl are given by the recursion that follows from E
~A2!,

hl5u~hl 21!1H, l>2, h15H1H̄. ~A5!

APPENDIX B: ON THE NATURE OF SPIKES IN THE
CONTINUOUS DISTRIBUTION q„h…

In our numerical calculation we representq(h) as anM
vector and use truncated Fourier series. This is guarantee
work well only for smooth functions. For example, truncat
Fourier series result in peaks near discontinuities~Fig. 12!.
These are called ‘‘Gibbs ears.’’ Note that the Gibbs ears h
a height that remains fixed, while their width narrows to 0
the resolution improves. There is accordingly no area
neath a Gibbs ear, unlike ad function. The spikes in Fig. 9
do not look exactly like the Gibbs ears: the Gibbs ears app
in pairs, and the positive ear has a negative counterp
whereas spikes in Fig. 9 are asymmetric, with negat
spikes much smaller and almost absent at the fine discre
tion (M5216) that we used to produce the plot. It is st
possible that equation~recursion! ~37! somehow creates a
type of positive-only Gibbs ear effect, but this does not se
likely.

FIG. 12. A function with discontinuities ~periodic on
@20.5;0.5#) and its Fourier expansion, truncated atM516 and
M532.
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